167 research outputs found

    NEARBY Platform: Algorithm for Automated Asteroids Detection in Astronomical Images

    Full text link
    In the past two decades an increasing interest in discovering Near Earth Objects has been noted in the astronomical community. Dedicated surveys have been operated for data acquisition and processing, resulting in the present discovery of over 18.000 objects that are closer than 30 million miles of Earth. Nevertheless, recent events have shown that there still are many undiscovered asteroids that can be on collision course to Earth. This article presents an original NEO detection algorithm developed in the NEARBY research object, that has been integrated into an automated MOPS processing pipeline aimed at identifying moving space objects based on the blink method. Proposed solution can be considered an approach of Big Data processing and analysis, implementing visual analytics techniques for rapid human data validation.Comment: IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Sep 6-8, 2018, Cluj-Napoca, Romani

    Searching for star-forming dwarf galaxies in the Antlia cluster

    Get PDF
    The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Using the Gemini South and GMOS camera, we acquired the Halpha imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties. Using archival VISTA VHS survey images, we derived K_S magnitudes and surface brightness profile fits for the whole sample to assess basic physical properties. FS90-98, FS90-106, and FS90-147 are confirmed as BCDs and cluster members, based on their morphology, K_S surface photometry, oxygen abundance, and velocity redshift. FS90-155 and FS90-319 did not show any H{\alpha} emission, and they could not be confirmed as dwarf cluster star-forming galaxies. Based on our data, we studied some fundamental relations to compare star forming dwarfs (BCDs and dIs) in the LV and in the Virgo, Fornax, Hydra, and Antlia clusters. Star-forming dwarfs in nearby clusters appear to follow same fundamental relations in the near infrared with similar objects in the LV, specifically the size-luminosity and the metallicity-luminosity, while other more fundamental relations could not be checked in Antlia due to lack of data.Comment: Accepted for publication in A&A (early 2014

    Asteroids Detection Technique: Classic "Blink" An Automated Approch

    Full text link
    Asteroids detection is a very important research field that received increased attention in the last couple of decades. Some major surveys have their own dedicated people, equipment and detection applications, so they are discovering Near Earth Asteroids (NEAs) daily. The interest in asteroids is not limited to those major surveys, it is shared by amateurs and mini-surveys too. A couple of them are using the few existent software solutions, most of which are developed by amateurs. The rest obtain their results in a visual manner: they "blink" a sequence of reduced images of the same field, taken at a specific time interval, and they try to detect a real moving object in the resulting animation. Such a technique becomes harder with the increase in size of the CCD cameras. Aiming to replace manual detection, we propose an automated "blink" technique for asteroids detection.Comment: Conference: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 24-26 May 2018, Cluj-Napoca, Romani

    NEARBY Platform for Detecting Asteroids in Astronomical Images Using Cloud-based Containerized Applications

    Full text link
    The continuing monitoring and surveying of the nearby space to detect Near Earth Objects (NEOs) and Near Earth Asteroids (NEAs) are essential because of the threats that this kind of objects impose on the future of our planet. We need more computational resources and advanced algorithms to deal with the exponential growth of the digital cameras' performances and to be able to process (in near real-time) data coming from large surveys. This paper presents a software platform called NEARBY that supports automated detection of moving sources (asteroids) among stars from astronomical images. The detection procedure is based on the classic "blink" detection and, after that, the system supports visual analysis techniques to validate the moving sources, assisted by static and dynamical presentations.Comment: IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romani

    Dozens of virtual impactor orbits eliminated by the EURONEAR VIMP DECam data mining project

    Full text link
    Massive data mining of image archives observed with large etendue facilities represents a great opportunity for orbital amelioration of poorly known virtual impactor asteroids (VIs). There are more than 1000 VIs known today; most of them have very short observed arcs and many are considered lost as they became extremely faint soon after discovery. We aim to improve the orbits of VIs and eliminate their status by data mining the existing image archives. Within the European Near Earth Asteroids Research (EURONEAR) project, we developed the Virtual Impactor search using Mega-Precovery (VIMP) software endowed with a very effective (fast and accurate) algorithm to predict apparitions of candidate pairs for subsequent guided human search. Considering a simple geometric model, the VIMP algorithm searches for any possible intersection in space and time between the positional uncertainty of any VI and the bounding sky projection of any image archive. We applied VIMP to mine the data of 451914 Blanco/DECam images observed between 12 Sep 2012 and 11 Jul 2019, identifying 212 VIs that possibly fall into 1286 candidate images leading to either precovery or recovery events. Following a careful search of candidate images, we recovered and measured 54 VIs in 183 DECam images. About 4000 impact orbits were eliminated from both lists, 27 VIs were removed from at least one list, while 14 objects were eliminated from both lists. The faintest detections were around V~24.0, while the majority fall between 21<V<23. The minimal orbital intersection distances remains constant for 67% detections, increasing for eight objects and decreasing for 10 objects. Most eliminated VIs had short initial arcs of less than 5 days. Some unexpected photometric discovery has emerged regarding the rotation period of 2018 DB, based on the close inspection of longer trailed VIs and the measurement of their fluxes along the trails.Comment: Accepted for publication in Astronomy & Astrophysics (27 July 2020

    Digital tracking cloud distributed architecture for detection of faint NEAs

    Get PDF
    There is an exponential volume of captured images, millions of captures taken every night being processed and scrutinized. Big Data analysis has become essential for the study of the solar system, discovery and orbital knowledge of the asteroids. This analysis often requires more advanced algorithms capable of processing the available data and solve the essential problems in almost real time. One such problem that needs very rapid investigation involves the detection of Near Earth Asteroids (NEAs) and their orbit refinement which should answer the question "will the Earth collide in the future with any hazardous asteroid?". This paper proposes a cloud distributed architecture meant to render near real-time results, focusing on the image stacking techniques aimed to detect very faint moving objects, and pairing of unknown objects with known orbits for asteroid discovery and identification

    Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software

    Full text link
    The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images were mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44 PHAs and 108 other NEAs) were identified using the PRECOVERY software, their astrometry being measured on 761 images and sent to the Minor Planet Centre. Both recoveries and precoveries were reported, including prolonged orbital arcs for 18 precovered objects and 10 recoveries. We analyze all new opposition data by comparing the orbits fitted before and after including our contributions. We conclude the paper presenting Mega-Precovery, a new online service focused on data mining of many instrument archives simultaneously for one or a few given asteroids. A total of 28 instrument archives have been made available for mining using this tool, adding together about 2.5 million images forming the Mega-Archive.Comment: Accepted for publication in Astronomische Nachrichten (Sep 2012
    • …
    corecore